SECOND SEMESTER
Semilinear Evolution Equations (CM522)

CM522: Semilinear Evolution Equations


Prof. Vicenţiu Rădulescu

 

  1. Energy methods for evolution problems.
  2. Maximal monotone operators: basic properties, the Hille-Yosida theorem (the selfadjoint case).
  3. The heat equation: existence, uniqueness and regularity properties. The maximum principle.
  4. The wave equation: existence, uniqueness and regularity properties.
  5. The Schrodinger equation: existence, uniqueness and regularity properties.



Bibliography

 

  1. V. Barbu, Partial Differential Equations and Boundary Value Problems, Mathematics and its Applications, vol. 441, Kluwer, 1998.
  2. H. Brezis, Analyse fonctionnelle, Masson, Paris, 1992.
  3. H. Brezis, Master Course at the University of Paris 6, lecture notes, 1993.
  4. J. Jost, Partial Differential Equations, Springer Verlag, 2002.
  5. M. Renardy and R. Rogers, An Introduction to Partial Differential Equations, Springer Verlag, 1996.