SECOND SEMESTER
Topological Methods in Nonlinear Analysis

Topological Methods in Nonlinear Analysis


Prof.dr. Constantin Niculescu



1. Background. Elements of Functional Analysis. Differential Calculus in Banach Spaces.

2. Fixed Point Existence Theory.

3. Degree Theory. Brouwer Degree. Leray-Schauder Degree.

4. The Krasnoselskii-Rabinowitz Bifurcation Theorem. Applications to PDE.



      Bibliography

 

1. H. W. Alt, Lineare Funktionalanalysis, Springer-Lehrbuch, Berlin, 1992.

2. R. F. Brown, A Topological Introduction to Nonlinear Analysis, Birkhäuser, Basel, 1993.

3. C.P. Niculescu, Special Topics in Functional Analysis, Universitaria Press, Craiova, 2005.

4. E. Zeidler, Nonlinear Functional Analysis and Its Applications: Fixed point Theorems, Springer-Verlag, 1986.