THIRD SEMESTER
Bifurcation Theory with Applications to Biology (CM612)

CM612: Bifurcation Theory with Applications to Biology

 


Prof. Carmen Rocşoreanu


    1. Topological equivalence of dynamical systems. Bifurcations and bifurcation diagrams. Classifications. The codimension of a bifurcation. Structural stability. Topological normal forms for bifurcations. Center manifolds. Some models from biology and economics: Van der Pol, Hodgkin-Huxley, FitzHugh-Nagumo, predator-prey.

    2. Codimension one bifurcations in continuous-time dynamical systems

    - Saddle-node bifurcation. The normal form derivation. Computation of the center manifold.

    - Hopf bifurcation. The normal form derivation. Computation of the center manifold.

    -          Homoclinic bifurcation. Andronov-Leontovich theorem. Shilnikov theorems. Melnikov integral.

    -          Saddle-node homoclinic bifurcation.

    -         Breaking saddles connection bifurcation.

    -          Bifurcations of limit cycles: fold bifurcation, flip bifurcation, Neimark-Sacker bifurcation.

    3.   Codimension two bifurcations in continuous-time dynamical systems

    -      Bogdanov-Takens bifurcation. Normal form. An approximation of the parameters curve  corresponding to homoclinic bifurcation.

    -            Bautin bifurcation. Normal form. An approximation of the parameters curve corresponding to fold bifurcation of cycles.

    -             Cusp bifurcation.

    -             Fold-Hopf bifurcation

    -             Hopf-Hopf bifurcation.

    -              Other codimension two bifurcations.

        4.   Numerical analysis of bifurcations. The software XPP. Applications.

     

Bibliography

 

1.      Chow, S.N., Li, C., Wang, D., Normal forms and bifurcations of planar vector fields, Cambridge Univ. Press, Cambridge, 1994.

2.      Chow, S.N., Hale, J., Methods of bifurcation theory, Springer, New-York, 1982.

3.      Dumortier, F., Roussarie, R., Sotomayor, J., Zoladek, H., Bifurcations of planar vector fields, nilpotent singularities and abelian integrals, Springer, Berlin, 1991.

4.      Georgescu, A., Moroianu, M., Oprea, I., Bifurcation theory. Principles and applications, Pitesti Univ. Press, Pitesti, 1999 (Romanian).

5.      Giurgiteanu, N., Computational economical and biological dynamics-DIECBI, Craiova, 1997. (Romanian)

6.      Guckenheimer, J., Holmes, P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, New-York, 1983.

7.      Hale, J.K. and Kocak, H., Dynamics and bifurcations, Springer, New York, 1991.

8.      Kuznetsov, Yu., Elements of applied bifurcation theory, Springer, New York, 1995.

9.      Murray, J.D., Mathematical Biology, Springer, Berlin, 1993.

10.  Rocsoreanu, C., Georgescu, A., Giurgiteanu, N., The FitzHugh-Nagumo model. Bifurcation and dynamics, Kluwer Academic Publishers, Dordrecht, 2000.

11.  Tu, P., Dynamical systems. An introduction with applications in economics and biology, Springer, Berlin, 1994.